Nonstationary Metabolic Flux Analysis (NMFA) for the Elucidation of Cellular Physiology by
نویسنده
چکیده
Many current and future applications of biological engineering hinge on our ability to measure, understand, and manipulate metabolism. Many diseases for which we seek cures are metabolic in nature. Small-molecule biomanufacturing almost always involves metabolic engineering. Biofuels, a current topic of great interest, is essentially a metabolic problem. Even bioprocesses that involve complex products, such as enzyme or antibody manufacturing, still rely on a healthy and optimal metabolism and can benefit from a greater understanding therein. A cell’s metabolic flux distribution has been proposed to be one of the most solid and meaningful indicators and descriptors of metabolism. Metabolic fluxes represent integrative information and are a function of gene expression, translation, posttranslational modifications, and protein-metabolite interactions. Metabolic flux analysis (MFA) is a powerful method for determining these flux distribution through a cellular reaction network. However, MFA has experimental limitations (most notably, a requirement for isotopic steady state) that restrict the scope of biological contexts in which it can be applied. Nonstationary metabolic flux analysis (NMFA) has recently emerged as a combined computational and experimental method that improves upon MFA with the capacity to estimate fluxes even during periods of isotopic transience in metabolism, allowing flux analysis to be applied in a broader range of experimental settings. In this thesis, we have developed and applied robust and efficient NMFA tools and techniques and applied them to understand various cellular physiologies. We built a software package (MetranCL) that combines the elementary metabolite unit (EMU) framework, a new network decomposition strategy termed block decoupling, and a customized differential equation solver. MetranCL performs flux estimations as much as 5000 times faster than the previous state-of-the-art NMFA methods, opening entirely new types of biological systems to the possibility of flux analysis. We applied MetranCL to a simulated large network representing E. coli metabolism and were able to successfully estimate reaction fluxes and metabolite concentrations
منابع مشابه
An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis.
Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method that systematically and comprehensively divides EMU systems of equations into smaller subproblems...
متن کاملOpenMebius: An Open Source Software for Isotopically Nonstationary 13C-Based Metabolic Flux Analysis
The in vivo measurement of metabolic flux by (13)C-based metabolic flux analysis ((13)C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a (13)C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model ...
متن کاملIdentification of optimal measurement sets for complete flux elucidation in metabolic flux analysis experiments.
Metabolic flux analysis (MFA) methods use external flux and isotopic measurements to quantify the magnitude of metabolic flows in metabolic networks. A key question in this analysis is choosing a set of measurements that is capable of yielding a unique flux distribution (identifiability). In this article, we introduce an optimization-based framework that uses incidence structure analysis to det...
متن کاملIsotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells.
We assessed several methods of (13)C metabolic flux analysis (MFA) and found that isotopically nonstationary MFA achieved maximum flux resolution in cultured P493-6 B-cells, which have been engineered to provide tunable expression of the Myc oncoprotein. Comparison of metabolic flux maps obtained under oncogenic (High) and endogenous (Low) Myc expression levels revealed network-wide reprogrammi...
متن کاملIsotopically nonstationary MFA (INST-MFA) of autotrophic metabolism.
Metabolic flux analysis (MFA) is a powerful approach for quantifying plant central carbon metabolism based upon a combination of extracellular flux measurements and intracellular isotope labeling measurements. In this chapter, we present the method of isotopically nonstationary (13)C MFA (INST-MFA), which is applicable to autotrophic systems that are at metabolic steady state but are sampled du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010